Description of I AM Blueprints

Grade 3 Mathematics

(Beginning 2019-20 School Year)

Reporting Category	Content Connector (CC)	Content Connector	CC Item Range	
			Min	Max
Algebraic Thinking and Data Analysis	MA.3.AT.1.a. 1	Use pictures and/or manipulatives to solve real-world addition and subtraction word problems with sums up to 100.	1	3
	MA.3.AT.2.a. 1	Use pictures, manipulatives, and/or arrays to solve real-world one-step multiplication and division word problems within 100.	0	2
	MA.3.AT.3.a. 1	Use pictures, manipulatives, and/or tables to solve real-world two-step addition and subtraction word problems up to 100.	1	2
	MA.3.AT.4.a. 1	Create a model to represent a multiplication problem.	0	2
	MA.3.AT.5.a. 1	Apply properties of operations as strategies to multiplication or division.	0	1
	MA.3.AT.6.a. 1	Identify number patterns using multiplication within 100	0	1
	MA.3.DA.1.a. 1	Organize given data into a graph.	0	2
	MA.3.DA.1.a. 2	Select the appropriate statement that describes the data representations based on a given bar graph or picture graph.	1	2
	MA.3.DA.2.a. 1	Organize measurement data into a line plot.	0	1
Computation	MA.3.C.1.a. 1	Add and subtract whole numbers with sums up to 100.	1	2
	MA.3.C.2.a. 1	Represent the concept of multiplication with manipulatives and arrays with numbers 1,5 , and 10.	0	2
	MA.3.C.3.a. 1	Represent division by sorting a set number of objects into a set number of groups. Up to 20 objects into up to 5 groups.	1	2
	MA.3.C.4.a. 1	Use representations of division (by sorting a set number of objects into a set number of groups) to find how many in one group. Up to 20 objects into up to 5 groups.	0	2
	MA.3.C.5.a. 1	Apply strategies of multiplication, including zero property of multiplication and identity property multiplication.	0	1
	MA.3.C.6.a. 1	Solve multiplication facts up to 10	1	2
Geometry and Measurement	MA.3.G.1.a. 1	Identify the following: cube, sphere, cylinder, and cone.	1	2
	MA.3.G.2.a. 1	Identify shared attributes of shapes based on the models provided.	0	1
	MA.3.G.3.a. 1	Use points to create a straight line with a ruler, straight edge, or technology.	0	1
	MA.3.G.4.a. 1	Partition shapes into equal parts (halves, thirds,	0	2

		fourths) with equal area.		
	MA.3.M.1.a. 1	Measure volume using gallons, quarts, and liters.	0	1
	MA.3.M.2.a. 1	Select appropriate tool for measuring length, weight, and temperature.	0	2
	MA.3.M.3.a. 1	Tell and write time to the nearest quarter hour. Solve real-world word problems involving the addition and subtraction of time intervals to whole hours or within an hour (e.g., whole hours: 5:00 to 8:00, within hours: $7: 15$ to $7: 45$) using manipulatives or pictures of a clock.	1	2
	MA.3.M.4.a. 1	Solve real-world problems to determine whether there is enough money to make a purchase using the next dollar strategy (round up to the next whole dollar).	1	3
	MA.3.M.5.a. 1	Find the area of rectangles by modeling with unit squares.	0	2
	MA.3.M.6.a. 1	Use tiling and addition to determine area of a rectangle.	0	1
	MA.3.M.7.a. 1	Identify a figure as getting larger or smaller when the dimensions of the figure change.	0	1
	MA.3.M.7.a. 2	Use addition to find the perimeter of a polygon.	1	2
	MA.3.NS.1.a. 1	Read, demonstrate, and write whole numbers up to 200, in standard and word form.	1	2
	MA.3.NS.2.a. 1	Compare two whole numbers up to 200 using $>,=$, and < symbols and words.	1	2
	MA.3.NS.3.a. 1	Identify the numerator of a fraction.	0	2
Number Sense	MA.3.NS.3.a. 2	Identify the denominator of fractions to halves, thirds, and fourths.	1	2
	MA.3.NS.3.a. 3	Identify halves, thirds, fourths of a whole.	1	2
	MA.3.NS.4.a. 1	Locate given common unit fractions (i.e., $1 / 2,1 / 4$) on a number line that has a value between 0 and 1 .	0	1
	MA.3.NS.5.a. 1	Represent halves and fourths between 0 and 1 on a number line.	0	2
	MA.3.NS.6.a. 1	Understand two fractions as equivalent (equal).	0	1
	MA.3.NS.7.a. 1	Recognize simple equivalent fractions using models to show equivalence.	0	1
	MA.3.NS.8.a. 1	Use $=,<$, or $>$ and/or words to compare two fractions with the same denominator using a model.	0	1
	MA.3.NS.9.a. 1	Use place value to round two-digit numbers to the nearest 10.	0	2
Process Standards (Aggregate Reporting Only)	*PS. 1	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their	0	2

	*PS. 7	Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.	0	1
	*PS.	Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.	0	1
		Link to IDOE's I AM Blueprint Total High Priority (Purple): 16 Total Medium Priority (Blue): 13 Total Lesser Priority (Gray): 17 *- Indicates standard not on Vertical Alignment		

